Chertow, G. M. & Milford, E. L. Poorer graft survival in African–American transplant recipients cannot be explained by HLA mismatching. Adv. Ren. Replace Ther. 4, 40–45 (1997).
Ilori, T. O. et al. Racial and ethnic disparities in graft and recipient survival in elderly kidney transplant recipients. J. Am. Geriatr. Soc. 63, 2485–2493 (2015).
Ng, F. L., Holt, D. W., Chang, R. W. & Macphee, I. A. Black renal transplant recipients have poorer long-term graft survival than CYP3A5 expressers from other ethnic groups. Nephrol. Dial. Transplant. 25, 628–634 (2010).
Roy, N. et al. Association of recipient APOL1 kidney risk alleles with kidney transplant outcomes. Transplantation 107, 2575–2580 (2023).
Zhang, Z. et al. Recipient APOL1 risk alleles associate with death-censored renal allograft survival and rejection episodes. J. Clin. Invest. 131, e146643 (2021).
Yang, J., Claas, F. H. J. & Eikmans, M. Genome-wide association studies in kidney transplantation: advantages and constraints. Transpl. Immunol. 49, 1–4 (2018).
Quinn, E. M. et al. Development of strategies for SNP detection in RNA-seq data: application to lymphoblastoid cell lines and evaluation using 1000 Genomes data. PLoS ONE 8, e58815 (2013).
Cirulli, E. T. et al. Screening the human exome: a comparison of whole genome and whole transcriptome sequencing. Genome Biol. 11, R57 (2010).
Lee, C., Kang, E. Y., Gandal, M. J., Eskin, E. & Geschwind, D. H. Profiling allele-specific gene expression in brains from individuals with autism spectrum disorder reveals preferential minor allele usage. Nat. Neurosci. 22, 1521–1532 (2019).
O’Connell, P. J. et al. Biopsy transcriptome expression profiling to identify kidney transplants at risk of chronic injury: a multicentre, prospective study. Lancet 388, 983–993 (2016).
Zhang, W. et al. Pretransplant transcriptomic signature in peripheral blood predicts early acute rejection. JCI Insight 4, e127543 (2019).
Hricik, D. E. et al. Infliximab Induction lacks efficacy and increases BK virus infection in deceased donor kidney transplant recipients: results of the CTOT-19 trial. J. Am. Soc. Nephrol. 34, 145–159 (2023).
Belbin, G. M. et al. Toward a fine-scale population health monitoring system. Cell 184, 2068–2083 e2011 (2021).
All of Us Research Program Genomics Investigators. Genomic data in the All of Us Research Program. Nature 627, 340–346 (2024).
Zhang, Z. et al. Genome-wide non-HLA donor-recipient genetic differences influence renal allograft survival via early allograft fibrosis. Kidney Int. 98, 758–768 (2020).
Pinto-Ramirez, J. et al. Risk factors for graft loss and death among kidney transplant recipients: a competing risk analysis. PLoS ONE 17, e0269990 (2022).
Sharif, A. Deceased donor characteristics and kidney transplant outcomes. Transpl Int 35, 10482 (2022).
Morales, J. M. et al. Risk factors for graft loss and mortality after renal transplantation according to recipient age: a prospective multicentre study. Nephrol. Dial. Transplant. 27, iv39–iv46 (2012).
Sollis, E. et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).
Zhang, J. et al. Leukocyte immunoglobulin-like receptors in human diseases: an overview of their distribution, function, and potential application for immunotherapies. J. Leukoc. Biol. 102, 351–360 (2017).
McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
Wu, G. et al. LILRB3 supports acute myeloid leukemia development and regulates T-cell antitumor immune responses through the TRAF2–cFLIP–NF-kB signaling axis. Nat. Cancer 2, 1170–1184 (2021).
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Jagannathan, R. et al. Association between APOL1 genotype and kidney diseases and annual kidney function change: a systematic review and meta-analysis of the prospective studies. Int. J. Nephrol. Renovasc. Dis. 14, 97–104 (2021).
Foster, M. C. et al. APOL1 variants associate with increased risk of CKD among African Americans. J. Am. Soc. Nephrol. 24, 1484–1491 (2013).
Grams, M. E. et al. Race, APOL1 risk, and eGFR decline in the general population. J. Am. Soc. Nephrol. 27, 2842–2850 (2016).
Parsa, A. et al. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 369, 2183–2196 (2013).
Clayton, P. A., Lim, W. H., Wong, G. & Chadban, S. J. Relationship between eGFR decline and hard outcomes after kidney transplants. J. Am. Soc. Nephrol. 27, 3440–3446 (2016).
Faddoul, G. et al. Analysis of biomarkers within the initial 2 years posttransplant and 5-year kidney transplant outcomes: results from clinical trials in organ transplantation-17. Transplantation 102, 673–680 (2018).
Loupy, A. et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study. Br. Med. J. 366, l4923 (2019).
Betjes, M. G. Immune cell dysfunction and inflammation in end-stage renal disease. Nat. Rev. Nephrol. 9, 255–265 (2013).
Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).
Freedman, B. I., Limou, S., Ma, L. & Kopp, J. B. APOL1-associated nephropathy: a key contributor to racial disparities in CKD. Am. J. Kidney Dis. 72, S8–S16 (2018).
Hammad, H. & Lambrecht, B. N. The basic immunology of asthma. Cell 184, 1469–1485 (2021).
Gillissen, A. & Paparoupa, M. Inflammation and infections in asthma. Clin. Respir. J. 9, 257–269 (2015).
Fahy, J. V. Type 2 inflammation in asthma–present in most, absent in many. Nat. Rev. Immunol. 15, 57–65 (2015).
Tubbs, J. D., Ding, J., Baum, L. & Sham, P. C. Immune dysregulation in depression: evidence from genome-wide association. Brain Behav. Immun. Health 7, 100108 (2020).
Drevets, W. C., Wittenberg, G. M., Bullmore, E. T. & Manji, H. K. Immune targets for therapeutic development in depression: towards precision medicine. Nat. Rev. Drug Discov. 21, 224–244 (2022).
Beurel, E., Toups, M. & Nemeroff, C. B. The bidirectional relationship of depression and inflammation: double trouble. Neuron 107, 234–256 (2020).
Moreira, A. C., Mesquita, G. & Gomes, M. S. Ferritin: an inflammatory player keeping iron at the core of pathogen–host interactions. Microorganisms 8, 589 (2020).
Hirayasu, K. et al. Evidence for natural selection on leukocyte immunoglobulin-like receptors for HLA class I in Northeast Asians. Am. J. Hum. Genet. 82, 1075–1083 (2008).
Oliveira, M. L. G. et al. Genetic diversity of the LILRB1 and LILRB2 coding regions in an admixed Brazilian population sample. HLA 100, 325–348 (2022).
Daugherty, M. D. & Malik, H. S. Rules of engagement: molecular insights from host–virus arms races. Annu. Rev. Genet. 46, 677–700 (2012).
Hill, A. V. et al. Common West African HLA antigens are associated with protection from severe malaria. Nature 352, 595–600 (1991).
Hughes, A. L. & Nei, M. Maintenance of MHC polymorphism. Nature 355, 402–403 (1992).
Zhuo, W. Q., Wen, Y., Luo, H. J., Luo, Z. L. & Wang, L. Mechanisms of ferroptosis in chronic kidney disease. Front. Mol. Biosci. 9, 975582 (2022).
Wang, J. et al. Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model. Cell Death Discov. 8, 127 (2022).
Yi, Z. et al. Key driver genes as potential therapeutic targets in renal allograft rejection. JCI Insight 5, e136220 (2020).
Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinf. 12, 246 (2011).
Jin, Y., Schaffer, A. A., Feolo, M., Holmes, J. B. & Kattman, B. L. GRAF-pop: a fast distance-based method to infer subject ancestry from multiple genotype datasets without principal components analysis. G3 9, 2447–2461 (2019).
Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.11–11.10.33 (2013).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).
Abul-Husn, N. S. et al. Exome sequencing reveals a high prevalence of BRCA1 and BRCA2 founder variants in a diverse population-based biobank. Genome Med. 12, 2 (2019).
Dewey, F. E. et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N. Engl. J. Med. 374, 1123–1133 (2016).
Ramirez, A. H. et al. The All of Us Research Program: data quality, utility, and diversity. Patterns 3, 100570 (2022).
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
Xiong, Y. et al. Proteomic cellular signatures of kinase inhibitor-induced cardiotoxicity. Sci. Data 9, 18 (2022).
Dai, Y. et al. WebCSEA: web-based cell-type-specific enrichment analysis of genes. Nucleic Acids Res. 50, W782–W790 (2022).
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 e1821 (2019).
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).